Oysters, Blue Crabs, Seatrout

Full Title: Building Resilience for Oysters, Blue Crabs, and Spotted Seatrout to Environmental Trends and Variability in the Gulf of Mexico

This project explores how oyster, blue crab, and spotted seatrout populations respond to human and environmental changes with the goal of improving the management of these economically and culturally important species.

The Team: John C. Lehrter (lead investigator, University of South Alabama, Dauphin Island Sea Lab jlehrter@southalabama.edu), Ronald Baker (University of South Alabama, Dauphin Island Sea Lab), Just Cebrian (Mississippi State University, Northern Gulf Institute), Brian Dzwonkowski (University of South Alabama, Dauphin Island Sea Lab), Latif Kalin (Auburn University), Lisa Lowe (North Carolina State University), Dan Petrolia (Mississippi State University), Sean Powers (University of South Alabama, Dauphin Island Sea Lab), Di Tian (Auburn University), and Seong Yun (Mississippi State University)

Technical Monitor: To be determined

Federal Program Office/Point of Contact: Frank Parker (frank.parker@noaa.gov)

Award Amount: $2,887,250

Award Period: This project began in September 2019 and will end in August 2024.

Why we care: The abundance of oysters, blue crabs, and spotted seatrout is rapidly declining in the Gulf of Mexico. These species have provided valuable food, raw material, recreation, and cultural resources to humans since the Gulf was settled. Today, the ecosystem services provided by these species are threatened, or near collapse in Gulf estuaries. This is partially due to human activities and environmental trends such as fisheries harvest and changes in water and habitat quality. Many of the underlying mechanisms that relate long-term trends and short-term variability in the environment to changing populations of oyster, blue crab and spotted seatrout are unquantified or unknown. 

What we are doing: This project will identify temperature, salinity (freshwater), oxygen (hypoxia), and pH (acidity) thresholds for oyster, blue crab, and spotted seatrout populations based on current and future habitat conditions, including climate variability and human-induced stressors. Thresholds will be quantified in mesocosm experiments, from field observations, and with numerical models. By linking multiple data sets of species recruitment, growth, and survival rates with natural and human induced environmental conditions across time, the project team will identify the large scale drivers and stressors of these populations in Mobile Bay, Alabama. Next numerical models will be created based off these data that can forecast population, ecosystem services, and socio-economic changes based on scenarios of future conditions. Public preferences about changes to the ecosystem will be gauged through a survey and incorporated into the models to calculate the costs and benefits of potential management actions. 

Expected Outcome: This project will provide Mobile Bay decision-makers a process for evaluating various scenarios, management actions, and outcomes based on single and multiple thresholds for oyster, blue crab, and spotted seatrout populations. It will help identify what individual or combined stressors affect these economically and culturally important species plus evaluate how management actions may improve the resilience of these populations to environmental change.

Comments are closed.